On self-embeddings of computable linear orderings

نویسندگان

  • Rodney G. Downey
  • Carl G. Jockusch
  • Joseph S. Miller
چکیده

The Dushnik–Miller Theorem states that every infinite countable linear ordering has a nontrivial self-embedding. We examine computability-theoretical aspects of this classical theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On computable self-embeddings of computable linear orderings

Wemake progress toward solving a long-standing open problem in the area of computable linear orderings by showing that every computable η-like linear ordering without an infinite strongly η-like interval has a computable copy without nontrivial computable self-embedding. The precise characterization of those computable linear orderings which have computable copies without nontrivial computable ...

متن کامل

Computable choice functions for computable linear orderings

One direction of research in computability theory is the study of the effective content of combinatorial theorems. The last chapter of Rosenstein’s book [2] reports on this type of investigation for linear orderings. Questions raised in that chapter have been the subject of a number of papers, and a summary of results in the area can be found in Downey [1]. In this paper, we consider the proble...

متن کامل

Prime Models of Theories of Computable Linear Orderings

We answer a long-standing question of Rosenstein by exhibiting a complete theory of linear orderings with both a computable model and a prime model, but no computable prime model. The proof uses the relativized version of the concept of limitwise monotonic function. A linear ordering is computable if both its domain and its order relation are computable; it is computably presentable if it is is...

متن کامل

Ordered Structures and Computability Ordered Structures and Computability Dedication

We consider three questions surrounding computable structures and orderings. First, we make progress toward answering a question of Downey, Hirschfeldt, and Goncharov by showing that for a large class of countable linear orderings, the Turing degree spectrum of the successor relation is closed upward in the c.e. degrees. Next we consider computable partial orders (specifically, finitely branchi...

متن کامل

On Maximal Block Functions of Computable η-like Linear Orderings

We prove the existence of a computable η-like linear ordering L such that, for any Π 2 function G : Q → N \ {0} and linear ordering B ∼= L , B does not have order type τ = ∑ {G(q) | q ∈ Q }.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 138  شماره 

صفحات  -

تاریخ انتشار 2006